

For 2025 Exams - Mathematics (041) - Class 11

☑ Select the correct option in the followings. Each question carries 1 mark.

01. The sixth term in the binomial expansion of $\left[2x - \frac{1}{3x}\right]^{10}$; x	$z \neq 0$ is
---	---------------

(a)
$${}^{10}\text{C}_4 \frac{2^4}{3^4}$$

(b)
$$-{}^{10}\text{C}_5 \frac{2^5}{3^5}$$

(a)
$${}^{10}\text{C}_4 \frac{2^4}{3^4}$$
 (b) ${}^{-10}\text{C}_5 \frac{2^5}{3^5}$ (c) ${}^{-10}\text{C}_4 \frac{2^4}{3^5}$ (d) ${}^{10}\text{C}_5 \frac{2^5}{3^5}$

(d)
$${}^{10}\text{C}_5 \frac{2^5}{3^5}$$

02. When $2^{4n} - 15n$, for all $n \in \mathbb{Z}^+$ is divided by 225, then the remainder will be

The coefficient of x^n in the binomial expansion of $(x^2 + 2x)^{n-1}$ is 03.

(a)
$$(n-1)\times 2^{(n-2)}$$

(b)
$$(n-1)\times 2^{(n-1)}$$

(c)
$$(n-1)\times 2^n$$

(d)
$$n \times 2^{(n-1)}$$

The coefficient of $\left(\frac{1}{x^3}\right)$ in the expansion of $\left[x - \frac{m}{x}\right]^{11}$; $x \neq 0$ is 04.

(a)
$$-924 \,\mathrm{m}^7$$

(b)
$$-792 \,\mathrm{m}^5$$

(c)
$$-792 \,\mathrm{m}^6$$

(d)
$$-330 \,\mathrm{m}^7$$

In the expansion of $\left[x^2 - \frac{1}{3x}\right]^9$; $x \ne 0$ the term without x is equal to 05.

(a)
$$-\frac{243}{28}$$

(b)
$$-\frac{28}{243}$$

(c)
$$\frac{28}{243}$$

(d)
$$\frac{28}{81}$$

In the expansion of $(1-x)^{20}$, the binomial coefficients of r^{th} and $(r+4)^{th}$ terms are equal, then 06.

(a)
$$r = 7$$

(b)
$$r = 8$$

(c)
$$r = 9$$

(d)
$$r = 10$$

The total number of terms in expansion of $(x+a)^{100} + (x-a)^{100}$ after simplification is 07.

The middle term in the expansion of $\left[\frac{2x}{3} - \frac{3}{2x^2}\right]^{2n}$; $x \neq 0$ is 08.

(a)
$$(-1)^n \times {}^{2n}C_n x^n$$

(a)
$$(-1)^n \times {}^{2n}C_n x^n$$
 (b) $(-1)^n \times {}^{2n}C_n x^{-n}$ (c) ${}^{2n}C_n x^{-n}$ (d) $(-1) \times {}^{2n}C_n x^{-n}$

(c)
$${}^{2n}C_{n}x^{-n}$$

$$(d) (-1) \times {}^{2n}C_1$$

If the coefficients of x^2 and x^3 in the expansion of $(3+ax)^9$ are the same, then a=09.

(a)
$$-\frac{9}{7}$$

(b)
$$-\frac{7}{9}$$

(c)
$$\frac{7}{9}$$

(d)
$$\frac{9}{7}$$

Given the integers r > 1, n > 2, and coefficients of $(3r)^{th}$ and $(r+2)^{nd}$ terms in the binomial 10. expansion of $(1+x)^{2n}$ are equal, then

(a)
$$n = 2r + 1$$

(b)
$$n = 3r$$

(c)
$$n = 2r$$

(d)
$$n = r + 1$$

The total number of terms in the expansion of $(1+a)^{35} + (1-a)^{35}$ after simplification is 11.

(a)
$$72$$

(a) 3^{rd} and 4^{th}

12.

13.

(d) 6^{th} and 7^{th}

	of n is				
	(a) 2	(b) 7	(c) 11	(d) 14	
14.	If A and B are coefficient of x^n in the expansions of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then				
	$\left(\frac{A}{B}\right)$ equals				
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{1}{n}$	
15.	Total no. of terms in the binomial expansion of $(1-x)^{25}$ is				
	(a) 25	(b) 24	(c) 26	(d) 13	
16.	Total no. of positive terms in the binomial expansion of $(1-x)^{51}$ is				
	(a) 52	(b) 26	(c) 51	(d) 13	
17.	Total no. of negative terms in the binomial expansion of $(1-x)^{52}$ is				
	(a) 52	(b) 53	(c) 27	(d) 26	
18.	In the binomial expansion of $(1-x)^{19}$, the coefficient of ninth term is				
	(a) $-^{19}C_8$	(b) ¹⁹ C ₈	(c) $-^{19}C_9$	(d) 19 C ₉	
19.	The coefficient of x in the expansion of $(1-3x+7x^2)(1-x)^{16}$ is				
	(a) 10	(b) 10	(a) 16	(4) 16	
20.	The coefficient	of $\frac{1}{x^{17}}$ in the expansion	n of $\left(x^4 - \frac{1}{x^3}\right)^{15}$; $x \neq 0$	is	
	(a) 1365	(b) 1635	(c) $-1365 \mathrm{x}^{-17}$	(d) -1365	
21.	If p is a real num	nber and if the middle	term in the expansion of	$r\left(\frac{p}{2}+2\right)^{8}$ is 1120, then	
	(a) $p = 2$	(b) $p = -2$	(c) $p = \pm 2$	(d) $p = 16$	
22.	The coefficient of x^6 in the expansion of $(x+3)^8$ is				
	(a) 28	(b) 252	(c) 63	(d) 242	
23.	The coefficient of x^5 in the expansion of $(1+2x)^6$ is				
	(a) 192	(b) 32	(c) 292	(d) -192	
one le	abelled Assertio i		_	tions. Two statements are given elect the correct answer from th	
	(b) Both Assertion(c) Assertion (A) is		ne and Reason (R) is not the se.	rect explanation of Assertion (A). correct explanation of Assertion (A).	

Assertion (A): Fifth term from end in the expansion of $(x + y)^{17}$ is ${}^{17}C_4 y^{13} x^4$.

The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio 1:4 are

If the coefficients of 2^{nd} , 3^{rd} and the 4^{th} terms in the expansion of $(1+x)^n$ are in A.P., then value

(b) 4th and 5th

(c) 5th and 6th

24.

Reason (R): The $(r+1)^{th}$ term from end in the binomial expansion of $(x+y)^n$ is same as the $(r+1)^{th}$ term from the beginning in the expansion of $(y+x)^n$.

25. **Assertion (A)**: Sum of the binomial coefficients in the expansion of $(x + y)^8$ is 512.

Reason (R):
$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + ... + {}^{n}C_{n} = 2^{n}$$
.

If you need MS Word files of our Mathematics Tests series of classes XII & XI (MCQ Type & Subjective Type Questions with Case Study), then you may grab it as a Premium Service (requires Payment).

Please contact on the WhatsApp @ +919650350480 to inquire about the Charges for the same.

This document contains MCQs for Mathematics (041) of class XI.

♦ Answers / Solutions is available on YouTube channel – Mathematicia By O.P. Gupta You can share this document with other students!

With a lot of Blessings!

O.P. GUPTA

Author & Math Mentor Indira Award Winner

The O.P. Gupta Advanced Math Classes @ Think Academy, Near Dhansa Bus Stand Metro Station Gate No.3, Najafgarh, Delhi

© Telegram / WhatsApp: +919650350480

YouTube.com/@theopgupta

Exclusive coaching for Maths (041)

By O.P. GUPTA

☑ CBSE XII

☑ CBSE XI

☑ CUET

☑ JEE - MAIN

☑ NDA

MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

Feel Safe to **Share this Document** with other math scholars

CLICK NOW

TO

Download

or, just type theopgupta.com

FREE PDF TESTS AND ASSIGNMENTS OF THE CLASSES XII, XI & X

To get FREE PDF Materials, join **WhatsApp Teachers Group** by Clicking on the Logo

Click on the **Book cover** to buv!

If you are a Student, then you may join our Students Group

CLICK HERE FOR **CLASSES** XI & XII

You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

2024-25 Edition

Buv our books on

amazon

For Bulk Orders of our Books at Discounted Price, contact on +91-9650350480

Flipkart